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Estimates of Outbreak Risk from New 
Introductions of Ebola with Immediate and 

Delayed Transmission Control  

Technical Appendix 

Additional Methods, Equations, and Results 

To fit the negative binomial model to each dataset, we used a method-of-moments 

estimator, which calculates R and k values that produce the exact mean and variance exhibited by 

the data. To estimate 90% confidence intervals, we ran 1 million nonparametric bootstrap 

resamples of each dataset, with replacement, and recalculated the R and k estimates for each 

resample. Then we used a bias-corrected percentile method (1) to construct the confidence 

intervals. We used the 1-sample Kolmogorov–Smirnov test, adapted for discrete variables (2), to 

assess goodness of fit, and the null hypothesis that each dataset was generated from the given 

negative binomial distribution was not rejected (P >0.6 in all cases).   

To model outbreaks stemming from case introductions, we first assumed a branching 

process in which the number of transmissions from each infected person is independent and 

identically distributed according to a discrete probability distribution governed by a probability-

generating function (pgf) f(s). The probability, pnz, that n independent infected persons produce a 

total of z transmissions, is the zth coefficient of the power series representation of [𝑓(𝑠)]𝑛, which 

can be extracted by calculating 

𝑝𝑛𝑧 =
1

𝑧!
[

𝑑𝑧

𝑑𝑠𝑧
[𝑓(𝑠)]𝑛]

𝑠=0
. 

We are interested in the probability that a branching process that goes extinct (a minor 

outbreak or stuttering chain) includes a given total number of cases, X, over all generations, 

including the initial case(s) in the total. When there is a single initial case, this value is governed 

by a pgf, g(s), satisfying the following equation: 
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𝑔(𝑠) = 𝑠𝑓(𝑔(𝑠)). 

Solving for the coefficients of the power series representation of g(s) can be achieved by 

using a Lagrange expansion, which results in the following (3):  

𝑃(𝑋 = 𝑥) =
1

𝑥!
[

𝑑𝑥

𝑑𝑠𝑥
𝑔(𝑠)]

𝑠=0
=

1

𝑥!
[

𝑑𝑥−1

𝑑𝑠𝑥−1
(𝑓(𝑠))

𝑥
]

𝑠=0

. 

Probability distributions of this form have been named basic Lagrangian distributions (4). 

When the number of initial cases is a random variable with pgf f0(s), then further 

Lagrange expansion results can be used to obtain the result, 

𝑃(𝑋 = 𝑥) =
1

𝑥!
[

𝑑𝑥−1

𝑑𝑠𝑥−1
{(𝑓(𝑠))

𝑥
𝑓0′(𝑠)}]

𝑠=0

. 

In the case that the number of initial cases is fixed at n, we have f0(s) = sn, leading to a 

delta Lagrangian distribution (reverting to basic when n = 1); otherwise, we have a general 

Lagrangian distribution (4).  

Example distributions have been generated by substituting pgf’s f(s) and f0(s) of several 

different discrete probability distributions into the above equations (3). When f(s) is the pgf of 

the negative binomial distribution with mean R and dispersion parameter k: 

𝑓(𝑠) = (1 +
𝑅

𝑘
(1 − 𝑠))

−𝑘

, 

we have 

𝑝𝑛𝑧(𝑅, 𝑘) =
Γ(𝑘𝑛 + 𝑧)

𝑧! Γ(𝑘𝑛)
(

𝑅

𝑅 + 𝑘
)

𝑧

(
𝑘

𝑅 + 𝑘
)

𝑘𝑛

, 

where Γ represents the gamma function. Here, pnz is the probability distribution for the number of 

transmissions z from the initial patient(s) only. The distribution for the total number of patients x 

over an entire stuttering chain starting with n initial patients is  

𝑞𝑛𝑥(𝑅, 𝑘) =
𝑛

𝑥

Γ(𝑘𝑥 + 𝑥 − 𝑛)

(𝑥 − 𝑛)! Γ(𝑘𝑥)
(

𝑅

𝑅 + 𝑘
)

𝑥−𝑛

(
𝑘

𝑅 + 𝑘
)

𝑘𝑥

, 
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where we have taken the “neg. binomial-delta” formula in Consul and Shenton (3) and replaced 

their parameterization of the negative binomial distribution with the one above. 

Blumberg and Lloyd-Smith (5) derived an equivalent result, although only for the 

scenario n = 1, without using the Lagrange expansion technique. The result above shows that a 

generalization of their approach would yield the following relationship: 

𝑞𝑛𝑥(𝑅, 𝑘) =
𝑛

𝑥
𝑝𝑥,𝑥−𝑛(𝑅, 𝑘). 

This equation gives the intuition that an outbreak with x total patients means that those x 

patients produced a total of exactly x – n transmissions, and the probability of that occurring 

from x independent patients must be adjusted by the fraction (n / x) to account for the fact that 

the transmissions must occur in an order that produces a valid transmission chain (5). This result 

was also described by Becker (6), who derived the final size distribution when the offspring 

distribution is expressed as a generalized power series distribution, of which the negative 

binomial distribution is a special case. 

Next, we consider a scenario in which n initially infected persons transmit according to a 

negative binomial distribution with parameters (R0, k0) and any and all subsequent persons 

transmit according to a different negative binomial distribution with parameters (Rc, kc). The 

probability rnx of an outbreak of total size x (including the n initial patients) is 

𝑟𝑛𝑥(𝑅0, 𝑘0, 𝑅c, 𝑘c) = {

𝑝𝑛0(𝑅0, 𝑘0), 𝑥 = 𝑛

∑ 𝑝𝑛𝑧(𝑅0, 𝑘0) 𝑞𝑧,𝑥−𝑛(𝑅c, 𝑘c)

𝑥−𝑛

𝑧=1

, 𝑥 > 𝑛.
 

The sum in this equation can be expressed by using a hypergeometric function, as in 

Consul and Shelton (3) (general Lagrangian distribution for the double-negative binomial case) 

for the case n = 1, but we found the above expression to be more convenient for calculations. 

To calculate the probability of x or more transmissions, we evaluated 

1 − ∑ 𝑞𝑛𝑚(𝑅, 𝑘),

𝑛+𝑥−1

𝑚=𝑛

 

or  
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1 − ∑ 𝑟𝑛𝑚(𝑅0, 𝑘0, 𝑅𝑐, 𝑘𝑐).

𝑛+𝑥−1

𝑚=𝑛

 

Although we have limited our study to scenarios in which R<1 or Rc<1, these exceedance 

probability equations are valid for all positive values of R or Rc. 

We further explored the effects of assuming different values of R and k in the initially 

controlled scenario by varying R from 0 to 1 and k from 0.01 to 100 and plotting the resulting 

probabilities of exceeding 1, 5, 10, and 100 total cases in an outbreak seeded by 1 person 

(Technical Appendix Figure, panels A, B, C, D). These results show contrasting interpretations 

of the parameter k. Although increasing R always increases exceedance probabilities, the effect 

of increasing k is not always the same, as higher variability (lower k) increases the probability of 

both below-average and above-average transmissions. For example, with R fixed at a specific 

value, a lower value of k decreases the probability of >1 transmissions (Technical Appendix 

Figure, panel A); that is, lower k increases the probability that the initial case will not transmit, 

which is the best-case scenario for a country experiencing an introduction. However, a lower 

value of k also increases the probability of worst-case scenarios for certain values of R, for 

example, the probability of >10 transmissions for R = 0.1 (Technical Appendix Figure, panel C) 

or the probability of >100 transmissions for R = 0.6 (Technical Appendix Figure, panel D).  
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Technical Appendix Figure. Exceedance probability contours showing R and k sensitivity. Probability 

contours in (R, k) parameter space with the assumption of a single initial patient. R is the reproductive 

number (i.e., average transmissions from each patient, including the initial patient), and k is the negative 

binomial dispersion parameter; a lower k corresponds to higher individual variability in transmission. A) 

Probability of >1 transmissions from the initial case; B) probability of >5 transmissions over the entire 

outbreak; C) probability of >10 transmissions over the entire outbreak; D) Probability of >100 

transmissions over the entire outbreak. 
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